A workflow consists of a sequence of concatenated (connected) steps. Emphasis is on the flow paradigm, where each step follows the precedent without delay or gap and ends just before the subsequent step may begin. This concept is related to non overlapping tasks of single resources.
It is a depiction of a sequence of operations, declared as work of a person, a group of persons,[1] an organization of staff, or one or more simple or complex mechanisms. Workflow may be seen as any abstraction of real work. For control purposes, workflow may be a view on real work under a chosen aspect,[2] thus serving as a virtual representation of actual work. The flow being described may refer to a document or product that is being transferred from one step to another.
Workflow concepts are closely related to other concepts used to describe organizational structure, such as silos, functions, teams, projects, policies and hierarchies. Workflows may be viewed as one primitive building block of organizations. The relationships among these concepts are described later in this entry.
The term workflow is used in computer programming to capture and develop human-to-machine interaction.
Contents |
The concept of workflow is closely related to several fields in operations research and other areas that study the nature of work, either quantitatively or qualitatively, such as artificial intelligence (in particular, the sub-discipline of AI planning) and ethnography. The term workflow is more commonly used in particular industries, such as printing and professional domains, where it may have particular specialized meanings.
In the 1980s, the term workflow was first used in its modern form in the software industry by FileNet founders Ted Smith and Ed Miller. The company called its business process automation software "WorkFlo".
In 1995, the publishing industry studied how traditional publishing processes could be re-engineered and streamlined into digital processes in order to reduce lagtime, as well as substantial printing and shipping costs for delivering print copies of books and journals to warehouses and subscribers. The term electronic workflow was used to describe the publishing process, from online delivery of digital manuscripts to the posting of content on the web for online access.
The development of the concept of workflow occurred over a series of loosely defined, overlapping, eras.
The modern history of workflows can be traced to Frederick Taylor[3] and H. Gantt. Rudolf Laban and Warren Lamb contributed to this in England. Together Taylor and Gantt launched the study of the deliberate, rational organization of work in the context of manufacturing. The types of workflow of concern to Taylor and his contemporaries primarily involved mass and energy flows. These were studied and improved using time and motion studies. While the assembly line remains the most famous example of a workflow from this era, the early thinking around work was far more sophisticated than is commonly understood. The notion of flow was more than a sequential breakdown of processing. The common conceptual models of modern operations research, including flow shops, job shops and queuing systems,[4] can be found in early forms in early 20th century industry.
Information based workflows began to grow during this era, although the concept of an information flow lacked flexibility. A particularly influential figure was Melvil Dewey (inventor of the eponymous Dewey Decimal System), who was responsible for the development of the hanging file folder. This era is thus identified with the simplest notions of workflow optimization: throughput and resource utilization.
The cultural impact of workflow optimization during this era can be understood through films such as Chaplin's classic Modern Times. These concepts did not stay confined to the shop floor. One magazine invited housewives to puzzle over the fastest way to toast three slices of bread on a one-side, two-slice grill. The book Cheaper by the Dozen introduced the emerging concepts to the context of family life.
The invention of the typewriter and the copier helped spread the study of the rational organization of labor from the manufacturing shop floor to the office. Filing systems and other sophisticated systems for managing physical information flows evolved. Two events provided a huge impetus to the development of formalized information workflows. First, the field of optimization theory matured and developed mathematical optimization techniques. Second, World War II and the Apollo program were unprecedented in their demands for the rational organization of work.
The classic management tome The Organization Man culturally captured the nature of work in this era.
During the 1980s two aspects of workflow organization drew heavy criticism. First, the methods pioneered by Taylor modeled humans as simple automata. The classical industrial-style organization of work was critiqued as being both dehumanizing and suboptimal in its use of the potential of human beings. Maslow's hierarchy of needs, which describes human needs for self-actualization and creative engagement in work, became a popular tool in this critique. This issue was acknowledged, but did not gain much traction otherwise.
The second critique had to do with quality. Workflows optimized for a particular time became inflexible as work conditions changed. Quality, in both analytic and synthetic manifestations, transformed the nature of work through a variety of movements ranging from total quality management to Six Sigma, then to more qualitative notions of business process reengineering (Hammers and Champy, 1991). Under the influence of the quality movement, workflows became the subject of much scrutiny and optimization efforts. Acknowledgement of the dynamic and changing nature of the demands on workflows came in the form of recognition of the phenomena associated with critical paths and moving bottlenecks.[5]
The experiences with the quality movement made it clear that information flows are fundamentally different from the mass and energy flows which inspired the first forms of rational workflows. The low cost and adaptability of information flows were seen as enabling workflows that were at once highly rational in their organization and highly flexible, adaptable and responsive. These insights unleashed a whole range of information technology at workflows in manufacturing, services and pure information work. Flexible manufacturing systems, just-in-time inventory management, and other highly agile and adaptable systems of workflow are products of this era.
A workflow management system is a computer system that manages and defines a series of tasks within an organization to produce a final outcome or outcomes. Workflow Management Systems allow you to define different workflows for different types of jobs or processes. So, for example, in a manufacturing setting, a design document might be automatically routed from designer to a technical director to the production engineer. At each stage in the workflow, one individual or group is responsible for a specific task. Once the task is complete, the workflow software ensures that the individuals responsible for the next task are notified and receive the data they need to execute their stage of the process. Workflow management systems also automate redundant tasks and ensure uncompleted tasks are followed up. Workflow management systems may control automated processes in addition to replacing paper workorder transfers. If for example the above design documents are now available as Autocad but the workflow requires them as Catia an automated process would implement the conversion prior to notifying the individual responsible for the next task. This is the concept of dependencies. A workflow management system reflects the dependencies required for the completion of each task.
The following examples illustrate the variety of workflows seen in various contexts:
The key driver to gain benefit from the understanding of the workflow process in a business context is that the throughput of the workstream path is modelled in such a way as to evaluate the efficiency of the flow route through internal silos with a view to increasing discrete control of uniquely identified business attributes and rules and reducing potential low efficiency drivers. Evaluation of resources, both physical and human is essential to evaluate hand-off points and potential to create smoother transitions between tasks. Several workflow improvement theories have been proposed and implemented in the modern workplace. These include:
As a way of bridging the gap between the two, significant effort is being put into defining workflow patterns that can be used to compare different workflow engines across both of these domains.
A workflow can usually be described using formal or informal flow diagramming techniques, showing directed flows between processing steps. Single processing steps or components of a workflow can basically be defined by three parameters:
Components can only be plugged together if the output of one previous (set of) component(s) is equal to the mandatory input requirements of the following component. Thus, the essential description of a component actually comprises only in- and output that are described fully in terms of data types and their meaning (semantics). The algorithms' or rules' description need only be included when there are several alternative ways to transform one type of input into one type of output – possibly with different accuracy, speed, etc.
When the components are non-local services that are invoked remotely via a computer network, such as Web services, additional descriptors (such as QoS and availability) also must be considered.
Many software systems exist to support workflows in particular domains. Such systems manage tasks such as automatic routing, partially automated processing and integration between different functional software applications and hardware systems that contribute to the value-addition process underlying the workflow.